
Cooley–Tukey FFT algorithm

The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It
re-expresses  the discrete  Fourier  transform (DFT) of  an arbitrary  composite  size   in  terms of  N1  smaller  DFTs of  sizes  N2,
recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers). Because of the algorithm's importance,
specific variants and implementation styles have become known by their own names, as described below.

Because the Cooley–Tukey algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other algorithm for the DFT.
For example, Rader's or Bluestein's algorithm can be used to handle large prime factors that cannot be decomposed by Cooley–Tukey, or the
prime-factor algorithm can be exploited for greater efficiency in separating out relatively prime factors.

The algorithm, along with its recursive application, was invented by Carl Friedrich Gauss. Cooley and Tukey independently rediscovered and
popularized it 160 years later.
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This  algorithm,  including  its  recursive  application,  was  invented  around 1805  by  Carl  Friedrich  Gauss,  who  used  it  to  interpolate  the
trajectories of the asteroids Pallas and Juno, but his work was not widely recognized (being published only posthumously and in neo-Latin).
[1][2]  Gauss  did  not  analyze  the  asymptotic  computational  time,  however.  Various  limited  forms  were  also  rediscovered  several  times
throughout the 19th and early 20th centuries.[2] FFTs became popular after James Cooley of IBM and John Tukey of Princeton published a
paper in 1965 reinventing the algorithm and describing how to perform it conveniently on a computer.[3]

Tukey reportedly came up with the idea during a meeting of President Kennedy’s Science Advisory Committee discussing ways to detect
nuclear-weapon tests in the Soviet Union by employing seismometers located outside the country. These sensors would generate seismological
time series. However, analysis of this data would require fast algorithms for computing DFTs due to the number of sensors and length of time.
This task was critical for the ratification of the proposed nuclear test ban so that any violations could be detected without need to visit Soviet
facilities.[4][5] Another participant at that meeting, Richard Garwin of IBM, recognized the potential of the method and put Tukey in touch
with Cooley however making sure that Cooley did not know the original purpose. Instead Cooley was told that this was needed to determine
periodicities of the spin orientations in a 3-D crystal  of helium-3.  Cooley and Tukey subsequently published their joint paper, and wide
adoption quickly followed due to the simultaneous development of Analog-to-digital converters capable of sampling at rates up to 300 kHz.

The fact that Gauss had described the same algorithm (albeit without analyzing its asymptotic cost) was not realized until several years after
Cooley and Tukey's 1965 paper.[2] Their paper cited as inspiration only the work by I. J. Good on what is now called the prime-factor FFT
algorithm (PFA);[3] although Good's algorithm was initially thought to be equivalent to the Cooley–Tukey algorithm, it was quickly realized
that PFA is a quite different algorithm (working only for  sizes that have relatively prime factors and relying on the Chinese  Remainder
Theorem, unlike the support for any composite size in Cooley–Tukey).[6]

A radix-2 decimation-in-time (DIT) FFT is the simplest and most common form of the Cooley–Tukey algorithm, although highly optimized
Cooley–Tukey implementations typically use other forms of the algorithm as described below. Radix-2 DIT divides a DFT of size N into two
interleaved DFTs (hence the name "radix-2") of size N/2 with each recursive stage.

The discrete Fourier transform (DFT) is defined by the formula:

where  is an integer ranging from 0 to .

Radix-2  DIT  first  computes  the  DFTs  of  the  even-indexed  inputs   and  of  the  odd-indexed  inputs

The radix-2 DIT case
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,  and  then  combines  those  two  results  to  produce  the  DFT  of  the  whole  sequence.  This  idea  can  then  be

performed recursively to reduce the overall runtime to O(N log N). This simplified form assumes that N is a power of two; since the number of
sample points N can usually be chosen freely by the application (e.g. by changing the sample rate or window, zero-padding, etcetera), this is
often not an important restriction.

The radix-2 DIT algorithm rearranges the DFT of the function  into two parts: a sum over the even-numbered indices  and a sum
over the odd-numbered indices :

One can factor a common multiplier  out of the second sum, as shown in the equation below. It is then clear that the two sums are the
DFT of the even-indexed part  and the DFT of odd-indexed part  of the function . Denote the DFT of the Even-indexed inputs

 by  and the DFT of the Odd-indexed inputs  by  and we obtain:

Note that the equalities hold for  but the crux is that  and  are calculated in this way for  only.

Thanks to the periodicity of the complex exponential,  is also obtained from  and :
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We can rewrite  as:

This result, expressing the DFT of length N recursively in terms of two DFTs of size N/2, is the core of the radix-2 DIT fast Fourier transform.
The algorithm gains its speed by re-using the results of intermediate computations to compute multiple DFT outputs. Note that final outputs
are obtained by a +/− combination of  and , which is simply a size-2 DFT (sometimes called a butterfly in this context);

when this is generalized to larger radices below, the size-2 DFT is replaced by a larger DFT (which itself can be evaluated with an FFT).

This process is an example of the general technique of divide and conquer algorithms; in many conventional implementations, however, the
explicit recursion is avoided, and instead one traverses the computational tree in breadth-first fashion.

The above re-expression of a size-N DFT as two size-N/2 DFTs is sometimes called the Danielson–Lanczos lemma, since the identity was
noted by those two authors in 1942[7] (influenced by Runge's 1903 work[2]). They applied their lemma in a "backwards" recursive fashion,
repeatedly doubling the DFT size until the transform spectrum converged (although they apparently didn't realize the linearithmic [i.e., order
N log N] asymptotic complexity they had achieved). The Danielson–Lanczos work predated widespread availability of mechanical or electronic
computers and required manual calculation (possibly with mechanical aids such as adding machines); they reported a computation time of
140 minutes for a size-64 DFT operating on real inputs to 3–5 significant digits. Cooley and Tukey's 1965 paper reported a running time of
0.02 minutes for a size-2048 complex DFT on an IBM 7094 (probably in 36-bit single precision, ~8 digits).[3]  Rescaling the time by the
number  of  operations,  this  corresponds  roughly  to  a  speedup factor  of  around  800,000.  (To  put  the  time  for  the  hand calculation  in
perspective, 140 minutes for size 64 corresponds to an average of at most 16 seconds per floating-point operation, around 20% of which are
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Data flow diagram for N=8: a decimation-in-time

radix-2 FFT breaks a length-N DFT into two

length-N/2 DFTs followed by a combining stage

consisting of many size-2 DFTs called "butterfly"

operations (so-called because of the shape of the

data-flow diagrams).

multiplications.)

In pseudocode, the below procedure could be written:[8]

X0,...,N−1 ← ditfft2(x, N, s):             DFT of (x0, xs, x2s, ..., x(N-1)s):

if N = 1 then

X0 ← x0 trivial size-1 DFT base case

else

X0,...,N/2−1 ← ditfft2(x, N/2, 2s)             DFT of (x0, x2s, x4s, ..., x(N-2)s)

XN/2,...,N−1 ← ditfft2(x+s, N/2, 2s)           DFT of (xs, xs+2s, xs+4s, ..., x(N-1)s)

for k = 0 to N/2−1 do combine DFTs of two halves into full DFT:

            p ← Xk
            q ← exp(−2πi/N k) Xk+N/2

Xk ← p + q 

Xk+N/2 ← p − q

end for

end if

Here, ditfft2(x,N,1), computes X=DFT(x) out-of-place by a radix-2 DIT FFT, where N is an
integer power of 2 and s=1 is the stride of the input x array. x+s denotes the array starting with
xs.

(The results are in the correct order in X and no further bit-reversal permutation is required;
the often-mentioned necessity of a separate bit-reversal stage only arises for certain in-place
algorithms, as described below.)

High-performance FFT implementations make many modifications to the implementation of such an algorithm compared to this simple
pseudocode. For example, one can use a larger base case than N=1 to amortize the overhead of recursion, the twiddle factors

can be precomputed, and larger radices are often used for cache reasons; these and other optimizations together can improve the performance
by an order  of  magnitude or  more.[8]  (In  many textbook implementations  the depth-first  recursion is  eliminated  entirely  in  favor  of  a
nonrecursive breadth-first approach, although depth-first recursion has been argued to have better memory locality.[8][9]) Several of these
ideas are described in further detail below.

Pseudocode

Idea
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The basic step of the Cooley–Tukey FFT for

general factorizations can be viewed as re-

interpreting a 1d DFT as something like a 2d DFT.

The 1d input array of length N = N1N2 is

reinterpreted as a 2d N1×N2 matrix stored in

column-major order. One performs smaller 1d

DFTs along the N2 direction (the non-contiguous

direction), then multiplies by phase factors

(twiddle factors), and finally performs 1d DFTs

along the N1 direction. The transposition step can

be performed in the middle, as shown here, or at

the beginning or end. This is done recursively for

the smaller transforms.

More generally, Cooley–Tukey algorithms recursively re-express a DFT of a composite size N =
N1N2 as:

[10]

1. Perform N1 DFTs of size N2.

2. Multiply by complex roots of unity (often called the twiddle factors).

3. Perform N2 DFTs of size N1.

Typically, either N1 or N2 is a small factor (not necessarily prime), called the radix (which can
differ between stages of the recursion). If N1 is the radix, it is called a decimation in time

(DIT) algorithm, whereas if N2 is the radix, it is decimation in frequency (DIF, also called
the Sande–Tukey algorithm). The version presented above was a radix-2 DIT algorithm; in the
final expression, the phase multiplying the odd transform is the twiddle factor, and the +/-
combination (butterfly) of the even and odd transforms is a size-2 DFT. (The radix's small DFT
is sometimes known as a butterfly, so-called because of the shape of the dataflow diagram for
the radix-2 case.)

There  are  many  other  variations  on  the  Cooley–Tukey  algorithm.  Mixed-radix
implementations handle composite sizes with a variety of (typically small) factors in addition to
two, usually (but not always) employing the O(N2) algorithm for the prime base cases of the
recursion (it is also possible to employ an N log N algorithm for the prime base cases, such as
Rader's or Bluestein's algorithm). Split radix merges radices 2 and 4, exploiting the fact that the
first  transform of radix 2 requires no twiddle factor,  in order to achieve what was long the
lowest  known arithmetic  operation count  for  power-of-two sizes,[10]  although recent  variations  achieve  an even lower  count.[11][12]  (On
present-day computers, performance is determined more by cache and CPU pipeline considerations than by strict operation counts; well-
optimized FFT implementations often employ larger radices and/or hard-coded base-case transforms of significant size.[13]).

Another way of looking at the Cooley–Tukey algorithm is that it re-expresses a size N one-dimensional DFT as an N1 by N2 two-dimensional
DFT (plus twiddles), where the output matrix is transposed. The net result of all of these transpositions, for a radix-2 algorithm, corresponds
to a bit reversal of the input (DIF) or output (DIT) indices. If, instead of using a small radix, one employs a radix of roughly √N  and explicit
input/output matrix transpositions, it  is called a four-step  algorithm (or six-step,  depending on the number of  transpositions),  initially
proposed to improve memory locality,[14][15] e.g. for cache optimization or out-of-core operation, and was later shown to be an optimal cache-
oblivious algorithm.[16]

Variations
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Illustration of row- and

column-major order

The general Cooley–Tukey factorization rewrites the indices k  and n  as  and ,
respectively, where the indices ka and na run from 0..Na-1 (for a of 1 or 2). That is, it re-indexes the input (n) and
output (k) as N1 by N2 two-dimensional arrays in column-major and row-major order, respectively; the difference
between these indexings is a transposition, as mentioned above. When this re-indexing is substituted into the DFT
formula for nk, the  cross term vanishes (its exponential is unity), and the remaining terms give

.

where each inner sum is a DFT of size N2, each outer sum is a DFT of size N1, and the [...] bracketed term is the twiddle factor.

An arbitrary radix r (as well as mixed radices) can be employed, as was shown by both Cooley and Tukey[3]  as well as Gauss (who gave
examples of  radix-3 and radix-6 steps).[2]  Cooley and Tukey originally assumed that the radix butterfly required O(r2)  work  and hence
reckoned the complexity for a radix r to be O(r2 N/r logrN) = O(N log2(N) r/log2r); from calculation of values of r/log2r for integer values of r

from 2 to 12 the optimal radix is found to be 3 (the closest integer to e, which minimizes r/log2r).
[3][17] This analysis was erroneous, however:

the radix-butterfly is also a DFT and can be performed via an FFT algorithm in O(r log r) operations, hence the radix r actually cancels in the
complexity O(r log(r) N/r logrN), and the optimal r is determined by more complicated considerations. In practice, quite large r (32 or 64) are

important in order to effectively exploit e.g. the large number of processor registers on modern processors,[13] and even an unbounded radix
r=√N  also achieves O(N log N) complexity and has theoretical and practical advantages for large N as mentioned above.[14][15][16]

Although the abstract Cooley–Tukey factorization of the DFT, above, applies in some form to all implementations of the algorithm, much
greater diversity exists in the techniques for ordering and accessing the data at each stage of the FFT. Of special interest is the problem of
devising an in-place algorithm that overwrites its input with its output data using only O(1) auxiliary storage.

The most well-known reordering technique involves explicit bit reversal  for in-place radix-2 algorithms. Bit reversal is the permutation
where the data at an index n, written in binary with digits b4b3b2b1b0 (e.g. 5 digits for N=32 inputs), is transferred to the index with reversed

Data reordering, bit reversal, and in-place algorithms
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digits b0b1b2b3b4 . Consider the last stage of a radix-2 DIT algorithm like the one presented above, where the output is written in-place over
the input: when  and  are combined with a size-2 DFT, those two values are overwritten by the outputs. However, the two output values
should go in the first and second halves of the output array, corresponding to the most significant bit b4 (for N=32); whereas the two inputs

 and  are interleaved in the even and odd elements, corresponding to the least significant bit b0. Thus, in order to get the output in the
correct place, b0 should take the place of b4 and the index becomes b0b4b3b2b1. And for next recursive stage, those 4 least significant bits will
become b1b4b3b2, If you include all of the recursive stages of a radix-2 DIT algorithm, all the bits must be reversed and thus one must pre-
process the input (or  post-process the output) with a bit reversal to get in-order output. (If each size-N/2 subtransform is to operate on
contiguous data, the DIT input is pre-processed by bit-reversal.) Correspondingly, if you perform all of the steps in reverse order, you obtain a
radix-2 DIF algorithm with bit reversal in post-processing (or pre-processing, respectively).

The logarithm (log) used in this algorithm is a base 2 logarithm.

The following is pseudocode for iterative radix-2 FFT algorithm implemented using bit-reversal permutation.[18]

algorithm iterative-fft is

input: Array a of n complex values where n is a power of 2.

output: Array A the DFT of a.

    bit-reverse-copy(a, A)

n ← a.length 

for s = 1 to log(n) do

m ← 2s

ωm ← exp(−2πi/m) 

for k = 0 to n-1 by m do

ω ← 1

for j = 0 to m/2 – 1 do

t ← ω A[k + j + m/2]

u ← A[k + j]

A[k + j] ← u + t

A[k + j + m/2] ← u – t

ω ← ω ωm

return A

The bit-reverse-copy procedure can be implemented as follows.

algorithm bit-reverse-copy(a,A) is

input: Array a of n complex values where n is a power of 2.

output: Array A of size n.

n ← a.length

for k = 0 to n – 1 do

A[rev(k)] := a[k]
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Alternatively,  some applications  (such  as  convolution)  work  equally  well  on bit-reversed  data,  so  one  can  perform forward  transforms,
processing, and then inverse transforms all without bit reversal to produce final results in the natural order.

Many FFT users, however, prefer natural-order outputs, and a separate, explicit bit-reversal stage can have a non-negligible impact on the
computation time,[13] even though bit reversal can be done in O(N) time and has been the subject of much research.[19][20][21] Also, while the
permutation is a bit reversal in the radix-2 case, it is more generally an arbitrary (mixed-base) digit reversal for the mixed-radix case, and the
permutation algorithms become more  complicated  to  implement.  Moreover,  it  is  desirable  on many hardware architectures  to  re-order
intermediate stages of the FFT algorithm so that they operate on consecutive (or at least more localized) data elements. To these ends, a
number of alternative implementation schemes have been devised for the Cooley–Tukey algorithm that do not require separate bit reversal
and/or involve additional permutations at intermediate stages.

The problem is greatly simplified if it is out-of-place: the output array is distinct from the input array or, equivalently, an equal-size auxiliary
array is available. The Stockham auto-sort algorithm[22][23] performs every stage of the FFT out-of-place, typically writing back and forth
between two arrays, transposing one "digit" of the indices with each stage, and has been especially popular on SIMD architectures.[23][24] Even
greater potential SIMD advantages (more consecutive accesses) have been proposed for the Pease algorithm,[25] which also reorders out-of-
place with each stage, but this method requires separate bit/digit reversal and O(N log N) storage. One can also directly apply the Cooley–
Tukey factorization definition with explicit (depth-first) recursion and small radices, which produces natural-order out-of-place output with
no separate permutation step (as in the pseudocode above) and can be argued to have cache-oblivious locality benefits  on systems with
hierarchical memory.[9][13][26]

A  typical  strategy  for  in-place  algorithms  without  auxiliary  storage  and  without  separate  digit-reversal  passes  involves  small  matrix
transpositions (which swap individual pairs of digits) at intermediate stages, which can be combined with the radix butterflies to reduce the
number of passes over the data.[13][27][28][29][30]
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